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Received 22 May 1989 

Abstract. The lock step model of vicious walkers on a one-dimensional lattice allows each 
walker at the tick of a clock to move either one lattice site to the left or one lattice site to 
the right. The only restriction is that no two walkers may arrive at the same lattice site or 
pass one another. In periodic boundary conditions the partition function and correlation 
function for this model are calculated exactly. Taking the continuum limit gives an exactly 
solvable model of vicious walkers undergoing Brownian motion. 

1. Introduction 

1.1. Domain walls in two-dimensional solids 

Domain walls refer to the boundary between two different allowed states of a sta- 
tistical system. The usefulness of the concept in providing quantitative predictions 
regarding the phases of two-dimensional model systems was first revealed in the work 
of Pokrovsky and Talopov [l]. These authors were studying a monolayer of atoms 
adsorbed on a surface which forms a two-dimensional lattice of possible adsorption 
sites. 

The simplest situation to treat theoretically is that in which the periodic potential 
experienced by the adsorbed atoms is very much stronger in one direction, the y 
direction say, than the x direction. Furthermore, suppose that the natural lattice 
spacing of the adsorbate in the x direction is slightly incommensurate to that of the 
underlying lattice. In the y direction the spacings are assumed commensurate. Then a 
phase in which the lattice spacing of the adsorbate is commensurate with the underlying 
lattice in both the x and y directions will develop at low temperature (see figure 1). 
As the temperature (or density, pressure, etc.) is increased this will give way to an 
incommensurate phase. 

As a phenomological theory close to this phase transition, it has been proposed 
[2] that the incommensurate phase consists of a sequence of commensurate phases 
each separated by domain walls of mean spacing v .  The spacing v is assumed large in 
comparison to the width of a wall. The important feature of this theory with regard 
to a transition to a commensurate phase is the existence of an interaction between 
the domain walls. The interaction is simply taken as a ‘hard core’ so that the walls 
cannot intersect each other, and the domain walls themselves are approximated as 
single piecewise straight lines fixed at both ends of the system in the y direction (see 
figure 2). Each wall has a Boltzmann weighting associated with its precise shape, but 
otherwise no other interactions are considered. A similar model system arose in the 
work of Villain and Bak [3] on the two-dimensional ANNNI model. 
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Figure 1. One of two possible commensurate phases when the natural lattice spacing of 
the adsorbate is approximately twice the lattice spacing of the underlying lattice. Dividing 
the lattice into two sublattices in the x direction, A and B as indicated, this can be labelled 
the A phase. The other commensurate phase, the B phase, has each adsorbate atom shifted 
across one lattice spacing. 

Figure 2. A typical configuration in the phenomological theory close :o the commensurate- 
incommensurate transition. The A phase and the B phase are separated by a thin layer 
(domain wall) in which the lattice spacing of the adsorbate is incommensurate with that of 
the underlying lattice. The domain wall is approximated by a single piecewise straight line. 

1.2. Vicious random walkers-the lock step model 

A precise model of non-intersecting domain walls can be formulated as follows [4]. 
Consider a square lattice with M x n sites wrapped around a cylinder in the x direction. 
Along the bottom (circular) row mark in N dots at N lattice sites, all equally spaced 
with spacing v (assume M / N  is an even integer). Also, on the top row mark in N 
dots at precisely the same location within the row as on the bottom row. Construct 
a partition function consisting of a sum over all possible paths between dots in the 
bottom and top rows. Each path must start at the bottom row, and move one row at 
a time to the top row according to the rules: 

(1) no path may go backwards or intersect any other path; 
(2) each dot in successive rows must either move one column to the left with 

weighting w - ~  or one column to the right with weighting w ,  (see figure 3 ) .  
This is clearly a problem in random walks, with the dots in each successive row 

representing the position of the walkers at each successive time interval. Walkers whose 
paths cannot intersect have been termed vicious by Fisher [4] and this particular model 
has been called the lock step model of vicious walkers. 

1.3. Aim and summary of the paper 

The primary objective of this paper is to complete an exact treatment of the lock step 
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1; 1;  1 ;  
Figure 3. A typical allowed path for the lock step model with periodic boundary conditions. 
The lattice edges on the left and the right are to be identified. As illustrated in this particular 
path, the final ordering of the walkers may be cyclically permuted with respect to the initial 
positions. 

model begun by Fisher [4] who showed that the partition function for a generalised 
version of the model presented above (see section 2.1 for its precise definition) in free 
boundary conditions can be expressed as a determinant. The first topic addressed here 
is the derivation of the analogue of this result for periodic boundary conditions using 
a difference equation. A very simple formula for the partition function of the lock 
step model as presented in section 1.2 is then obtained (equation (2.28)). This allows 
the variation of v ,  the mean spacing between walls, to be calculated as a function of 
the weights w - ~  and w l .  The well known [2] commensurate-incommensurate phase 
transition is exhibited. 

In section 3, exact evaluations of one- and two-point correlation functions are 
performed, and presented for both the strip and two-dimensional system. The known 
[5,6] critical behaviour of the correlation length is recovered. In the final section the 
continuum limit is taken, whereby the discrete vicious walkers become a model of 
non-intersecting Brownian motion particles. 

Before beginning the study, it is appropriate to remark that similar discrete walker 
problems have previously been studied by Villain and Bak [3] and Shultz [5 ] .  However, 
neither of these works considered the lock step model and consequently were restricted 
to an analysis valid only in the large lattice size limit. Also, as remarked above, in 
free boundary conditions the determinant formula has previously been obtained by 
Fisher [4] and Huse and Fisher [ 6 ] .  Their interest was in calculating the long-time 
behaviour of the partition function for a fixed number of walkers, which is related to 
the large-separation behaviour of correlation functions in Ising and higher-state two- 
dimensional spin models. Here our interest is in the limit in which both the number of 
steps and the number of walkers become infinite. 

2. The partition function for the lock step model 

2.1. A more general version of the lock step model 

Let the lattice sites along any row be labelled 1,2,. . . , M according to their position on 
the row. Recall that the lattice has been wrapped around a cylinder so that the Mth 
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site of any row is next to the first. Generalise the model of section 1.2 to allow the N 
walkers to initially be at the lattice sites L’,,L;, . . . ,Lh. The sites tj (j = 1 , .  . . , N )  are 
arbitrary except that they must all be different and form part of the even-numbered 
sublattice. They may be ordered so that 

1 5 C; < S; < ...  < Lb 5 M .  (2.1) 

Let the final position of the walkers be at L l , t 2 , . . . , L , v  on the nth row. These 
positions may be ordered so that 

e,  < e,.. .  < P, < e l  (2.2) 

where here the inequality a < b means a is to the left of b when facing towards the 
centre of the cylinder. The walks between the lattice sites (2.1) on the first row and the 
lattice sites (2.2) on the nth row are again subject to the rules ( 1 )  and (2) of section 
1.2. It is convenient to think of t, as the final position of the j th  walker. However, 
t; is then not necessarily the initial position of the j th  walker. In general, the initial 
position of the j th  walker may be any one of the lattice sites e‘,, . . . , e;. (see figure 3). 

The partition function Z of this model can be written 

(2.3) 
pEp j=1 

Here g~ denotes the set of all allowed paths, according to the rules of section 1.2. 
Any one member p of this set consists of N paths. Each of the N paths is weighted 
according to rule (2) of sections 1, 2; the j th  path of g~ having total weight W,( t ;  I Lj).  

2.2.  A multi-variable diference equation 

According to rule (2) of section 1.2, the partition function with n+ 1 rows is related to 
a sum over partition functions with n rows. The equation is most compactly written 
by denoting 

(2.4) Z ( t / , ,  . . . , t k  I L,, . . . , L, ; n) = Q ( t l  ; n)Q(P,; n) . . . Q(PN ; n).  

(Note well: it is not possible to factorise Z as such; this is merely a convenient 
notation.) Then 

This multi-variable difference equation is to be solved subject to the initial condition 

which, when thinking of / k  as representing the final coordinates of the walkers, says 
that the initial coordinates may be any cyclic combination of e’,, . . . , P h  in order. Here 

(2.7) l j + k  := l j+k-N if j + k > N .  
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Since the lattice has been wrapped around a cylinder, it is necessary that the solution 
of (2.5) satisfies the periodicity condition 

Z ( / ' ,  ,..., I e,, . . . , ~ j +  M,...,LN;n)=Z(e;,...,G:, I d 1 , . . . , t N ; n )  (2.8) 

for each j = 1,2,. . . , N .  
The non-crossing condition for the paths must also be satisfied. A crucial feature 

of the solvability of the lock step model is that for the paths to cross, the walkers must 
first arrive at the same lattice site. Thus the non-crossing condition can be replaced by 
the non-intersecting condition 

z([:,..~,tk 1 e,  ,..., ( j , . . . e k , . . . , d , ; n )  = o  if t j  = t k  (2.9) 

f o r a n y j # k = 1 , 2  ,..., N .  

solution of (2.5). For N odd, the required solution is given by the following result. 
The conditions (2.1), (2.2) (with e replaced by I), and (2.6)-(2.8) specify a unique 

Theorem 2.1. Let N be odd. Then the partition function of the above-specified lock 
step model is given by 

z(e',, . . ., & I . . . Y  ; n) = det[Qko)(ei I e k ) l j , k = l , , , , J  (2.10) 

where 

(2.1 1) 

and 

(2.12) -it? = w-,e + wlele. 

Remark. QLo)(t; I t k )  is the partition function of a single walker on a cylinder, starting 
at site e: on the first row and finishing at site on the nth row. 

Proof: Since QLo)(d; I e,) is the partition function of a single walker it satisfies the 
difference equation 

Q$!,([i I L k )  = w-,QLo'(ei 1 - 1) + wiQIp'(Lj I d k  + 1). (2.13) 

In (2.10), with n replaced by n + 1, use of (2.13) in the first row gives 

z(t ;  ) . . . )  e:, If, ,..., e N ; n + l )  

(2.14) 
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where the first entry in each determinant holds true for the first row only, while the 
remaining N - 1 rows are specified by the second term. Now apply the recurrence 
(2.13) and the determinant identity used to obtain the second line in (2.14) to each of 
the rows 2,3 , .  . . , N in order, to each determinant in (2.14) and to the new determinants 
introduced in this procedure. A total of 2N terms results. If the notation (2.4) is 
introduced, it is clear that these terms can be factorised according to the right-hand 
side of (2.5). Thus (2.10) satisfies the difference equation (2.5). 

Now 

Qr’(ti I e,) = dt ; , tk .  (2.15) 

Furthermore {fj} and { e k }  are ordered according to (2.1) and (2.2) respectively. Thus, 
unless {e;} = {e,}, 

z(e; ) . . . )  e;, 1 e l , .  ..,L,;O) = 0. (2.16) 

If {e(,} = {e,}, the partition function with n = 0 as given by (2.10) is the determinant 
of a cyclic matrix with all entries in the top row 0 except for a single entry of 1.  Since 
N is odd, the order of the matrix is odd, so such a cyclic matrix can be obtained from 
the identity by an even number of row ifiterchanges Hence in this case 

z(e: ) . . . )  1 e, ). . .)  L,;O) = 1 (2.17) 

and so the initial condition (2.6) is satisfied. 
The periodicity condition (2.8) follows immediately from the periodicity 

Qho’(tj I + M )  = Q r ’ ( f j  1 e,) (2.18) 

and the non-intersecting condition (2.9) is an immediate consequence of the vanishing 
property of determinants whenever two rows are equal. The theorem thus follows. 

It remains an open problem to obtain an identity analogous to (2.10) for N even. 

2.3. Evaluation of the partition function for equally spaced initial and jinal positions 

Consider again the lock step model as formulated in section 1.2. This corresponds to 
the model as formulated in the previous subsection with 

/ ‘ . = e  I /  = j v  j = 1 , 2  ,..., N (2.19) 

where 

v = M / N  (2.20) 

is the average spacing between walkers, and is assumed to be an even integer. Let the 
partition function of this model be denoted Z P ) .  Then from (2.10) and (2.12), provided 
N is odd, 

Z:”’ = det [ Qf)(j I k)] 
j , k = 1 ,  ...A 

(2.21) 
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We note 

(2.22) 

(2.23) 

Thus 
Fo F1 . . .  FN-1 

F N - 1  Fo ... F N - 2  2:" = det (2.24) I F, F2 . . .  Fo I,,, 
and so in this case the partition function is the determinant of a cyclic matrix. Hence, 
by the well known formula for the evaluation of such a determinant [7], 

N-1 N-1 M-1 

[4 (274M)l  - - n c e2niaP/N c e-2niaa/N 

t=O a=O z=o 

Equation (2.25) can be simplified by noting that 

(2.25) 

(2.26) 
a=O 

for any integer b. Since 0 S a I N - 1, 0 I ci I M - 1 and M = vN, the non-zero 
cases in (2.26) occur when 

(2.27) b = O,-l, - 2 , .  . . , -(v - 1 ) .  

Hence 

N-l 1 "-' 
ZANJ = n ; x[4(2n(C/M + b/v))]" 

t=O b=O 
(2.28) 

t=O b=O 

where the second line follows from the first by the antiperiodicity property of 4 as 
defined by (2.12). Note that Z i N )  vanishes if n is odd, as it must from the definition of 
the model. 

As an illustration of the simplicity and content of (2.28), take n = M = 12 and 
N = 3. With w - ~  = wl = 1, 2:;) counts the number of non-intersecting paths, formed 
according to the rules of section 1.2, between the sites el, = 4,L; = 8 and 8; = 12 on 
the first row and the same sites on the top row of a 12 x 12 lattice wrapped around a 
cylinder. From (2.28) and (2.12) 

(2.29) Z/iJ = 29( 1 + 36)2 = 272 844 800. 
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2.4.  Free energy of the lock step model 

Let 

(2.30) 

denote the dimensionless free energy per unit length on a strip-shaped lattice of infinite 
length and width n rows. The average distance between walkers v is to be held fixed in 
the limiting procedure. From (2.28) we see that taking the logarithm gives an expression 
which is just the Riemann sum approximation to an integral. Hence, for n even 

f n ( v )  = d [log(v/2) - L' log('!l[4(2n(t + b)/v)]")dt]. 
b=O 

(2.31) 

Now suppose w1 = w- ,  so that 

4(e) = 2w, case (2.32) 

and consider (2.31) in the large number of steps n limit. Denoting the free energy per 
lattice site in the two-dimensional thermodynamic limit as F(v), we then have 

L"' log I cos 2ntldt. (2.33) 1 
F(v) = -- l0g(2wI) - 

V 

2.5. Phase transition in the domain wall model 

The model of domain walls by vicious walkers requires that the distance between walls 
be a variable. For a given Boltzmann weight w , ,  the spacing v which minimises the 
free energy F(v) is the required choice. Regarding v as a continuous variable, from 
(2.33) the minimum occurs when 

2w, = [cos(2n/v)]-'. (2.34) 

It follows that for 2w, 1 the value of v which minimises the free energy v is v + CO. 

In the model of section 1.1, this corresponds to a commensurate phase. 
For 2w, > 1 there are a series of incommensurate phases characterised by the mean 

spacing v (which must be an even integer) and separated by first-order transitions. 
As 2w1 --* l+ ,  the transitions becomes quasicontinuous and we see from (2.34) the 
behaviour 

(2.35) 

The exponent 
Minimisation of the strip-system free energy (2.31) with respect to v also yields a 

commensurate phase for 2w; I 1, and a series of incommensurate phases with a finite 
value of v depending on w1 and n for 2w1 > 1. However, there is no divergence of v as 
the transition is approached from the incommensurate phase. For v > n, the partition 
function factorises into that for non-interacting walkers, and the minimum free energy 
in these cases occurs when v = n + 2. This is a bound on v in the incommensurate 
phase of the strip system. 

is well known [1,8]. 
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3. Correlations for the lock step model 

3.1. Transformation of the partition function of the generalised lock step model 

In order to calculate correlation functions, it is convenient to first transform the 
partition function (2.10) in the case when the walkers are initially equally spaced so 
that t; = v j  for each j = 1,2,. . . , N. The transformation is accomplished by multiplying 
(2.10) in this case by unity in the form of 

(3.1) 

(see e.g. [7] for the derivation of this result). Thus, after straightforward manipulation, 
we have 

j=1,2 ,..J 
det{ 2 e-2nit,(k+bN)/M 

b=O k=-(N-1)/2 ...., ( N -  I) /2  

3.2. Calculation of the one-point function 

The one-point function we shall calculate is the density ,p(L', n') that a vicious walker 
will arrive at the lattice site e' in n* steps and then arrive at the final lattice site in a 
total of n steps. The final and initial configurations are taken as being equally spaced 
and the steps are formed according to rules ( 1 )  and (2) of section 1.2. Explicitly, 

x Z ( v  ,..., Nv 1 L, ,..., LN;n ' )Z (L l  ,..., L, 1 v ,..., N v ; n - n ' )  

(3.3) 

where R denotes the region (2.2) and 6 / 6 A  denotes functional differentiation. Since 
the summand in (3.3) is symmetrical in the Lj  we can sum from 1 to M in each variable 
provided we divide by N !. 

Now substitute the identity (3.2) in (3.3) and expand out the determinant using the 
defining formula 

N !  N 

det[Xj,k]j,k=1,2 ,... ,N = 1 '('1 xP,P(P). (3.4) 
P=l  / = I  

An expression of the form 

P=l Q=I 

results, which is simply 

(3.5) 
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This procedure yields the identity 

2N - 1  
6 A(d') 

, p ( d * ,  n') = ( z ~ " N ~ v  

where 

fk ,k j (d ,b ,c)  = exp[-27ri/(k - k ' + ( b  - c)N)/M] 

x [ 6 ($(k + b N ) ) ]  [I$ ($(k' + c N ) ) ]  "-'* . 

The functional differentiation can be performed row-by-row in the determinant and 
thus only one row, the pth, say, (p = - (N  - 1)/2, ...,( N - 1)/2), is affected by the 
differentiation. Setting A ( [ )  = 0 in the other rows gives that the only non-zero term 
occurs when k = k' and has the value 

M [6 ($(k + b ~ ) ) ] '  (3.9) 

The only term in the pth row which contributes to the value of the determinant is 
therefore also on the diagonal. Recalling (2.28) we thus have the evaluation 

Taking the two-dimensional thermodynamic limit M , n  + m shows that the resulting 
density p ( f , n ' )  is periodic in d' with period v. The leading behaviour for n* large in 
the symmetric case (2.32) is 

dt}: (3.11) 
1'2v cos"' [27r(t + l/v)] s -1/2" cos"(271t) 

) {; + 2cos(2nd'/v) 

3.3. The two-point correlation 

The two-point correlation , p T ( ( L , ,  n l ) ,  6 b ,  n2) )  is defined as 

where " p ( d ,  n) is given by (3.3). The quantity ,p((!,, nl), ( t b ,  n2)) denotes the distribution 
function for a walker arriving at site La in nl steps and a walker arriving at site f b  in 
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n2 steps, and then all walkers arriving at an equally spaced configuration in n steps. 
Explicitly 

x Z ( v  ,..., Nv I Itl ,..., ItN;nl)Z(C1 ,..., CN 1 C‘, ,..., Ch;n2-nl)  
x Z ( C ;  ,..., L‘L I v ,..., Nv;n-n2)  l A = B = O .  (3.13) 

For the first and third partition functions in (3.13) substitute the identity (3.2) 
while for the second substitute (2.10). Manipulation of the determinants as sketched in 
section 3.2 then shows 

(3.14) 1 k,k’=-(N-l)/2, ..., (N-1)/2 
x det [ 5 2 (1 +A(/))( l  +B(e’))gk,,(e,e’,cr,b,C) 

c‘,P,z=l b,c=O 

where 

gk,k#(t,!’, a, b, c) = exp[2xi/(cr - k - bN)/M - 2xit’(cw - k’ - cN)/M] 

x [4  ( E ( k + b N ) ) ] f l ’  [4(:(k’+cN))lnpn2 (3.15) 

Performing the functional differentiation affects at most two rows of the determinant 
in (3.14). Again, with A = B = 0 in the remaining rows, the only non-zero term is the 
diagonal with the value (3.9). In the thermodynamic limit with M, N -+ m, M/N = v = 
constant and nl, n2, n -+ CO, n2 - n,  = n = constant, this procedure yields the exact 

evaluation for the two-point correlation 

Equation (3.16) assumes the parities of the number of steps n* and lattice sites L, and 
8 b  are such that paths to and from the initial and final configurations to these sites are 
permissable (otherwise pT(!, - ! b ;  n’) is zero). 

3.4. Asymptotic behaviour of the correlations 

Let us first consider the transverse correlation p T ( t o  - t b ; o ) .  From (3.16), for t, # L,, 

(3.17) 
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which is the same functional form as the two-particle correlations for free fermions on a 
line or the log-potential one-component plasma on a line at the reduced coupling = 2 
[9]. The correlation (3.17) decays algebraically for all v ,  so the assumed functional 
form [lo] e-ltn-tbl't for the definition of the exponent vL (not to be confused with the 
mean-spaced v )  does not hold. However, from (3.17) the separation 1 L, - L, 1 can 
always be made to occur in the ratio n 1 L, - 1 / v  so it  seems reasonable to take 
5 = v.  Near the commensurate-incommensurate transition v behaves as given by (2.35) 
so 

v1 = 1/2 (3.18) 

as has been previously deduced [5,6]. 

w ,  = w - ~ ,  from (2.32) and (3.16) we see 
The parallel correlation occurs when L, -Lb = 0. Considering the symmetrical case 

1/2v 114 
pT(O;n') = 16 (cos 2nt)-"*ddt l,, (cos 2ns)"'ds. (3.19) 

For n* large, asymptotic expansions of the integrals in (3.19) can be obtained by 
expanding both integrals about 1/2v. If v is also large, this gives 

(3.20) 

Again this functional form does not agree with that assumed in the definition of the 
correlation length <. However, it is always possible to choose n* to occur in the ratio 
n 2 n ' / v 2  so it seems reasonable to choose ( = v2/n2. This gives the exponent as 

V I  = 2v, = 1 (3.21) 

in agreement with previous work [5,  61. 

4. Vicious walkers undergoing Brownian motion 

It was noted by Fisher [4] that the continuum limit of the lock step model could 
be taken to obtain a model of vicious walkers undergoing Brownian motion. The 
continuum limit can be illustrated by considering the partition function (2.11) for a 
single discrete walker. It is necessary to define a length scale, T say, which is the 
distance between nearest-neighbour lattice sites, and to redefine the partition function 
to include l / t  as a factor. Doing this, using the periodicity of the summand and 
considering the symmetric case (2.32), (2.1 1) becomes 

Following Fisher [4], define 
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and let b2 denote the mean-square displacement. For the lock step model 

b2 = T‘. (4.3) 

The continuum limit is then 

M+CC c + m  n + m  5 - 0  b+O 
s e  + x T M  + L b2n + Dt Q n + u  I (4.4) 

where x, L, D, Q and t are all finite. Since for n and M large 

in the continuum limit (4.1) tends to Qjo’(x’ I x) where, defining 0 3 ( z ; q )  as in Whittaker 
and Watson [ll],  

The quantity Qjo’(x’ I x) can be characterised as the unique solution of the gener- 
alised heat equation [4] 

subject to periodic boundary conditions, period L, and the initial condition 

Q ~ ’ ( x ’  I X) = ~5,,,~ 0 x,x‘ I L. (4.8) 

4.1 .  A model of de Gennes 

The continuum version of the partition function (2.3) was studied by de Gennes [12], 
long before the discrete model was considered. This is a two-dimensional model, in 
the X - T  plane say, consisting of N strings attached along the line T = 0 at equal 
spacing v .  The other end of the strings are attached along the line T = t at the points 
x l r  x2,. . . , xN. Each string x(t) is flexible but at an energy cost E[x(t)] which is directly 
proportional to the length of the string. Thus 

2 112 

E [ x ( r ) ] = A L t [ l + ( $ ) ]  d T  

Assuming 1 dx/dT I<< 1, the square root can be expanded to give 

EdG [x( T)] = A t  + A - 2 Lr ($)’dT. 

(4.9) 

(4.10) 

There are no forces between different strings except that they are not allowed to 
overlap. The total energy of the system is therefore the sum of self-energies of the N 
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strings subject to that constraint. The partition function can be written as the path 
integral 

2 
(4.1 1)  

1 N 

G(x’,,. . . ,xh 1 x l , .  . . ,x.,,; t )  = e-aNr 1 n e x p  [ - Lt (2) dT] 9 x j  
j = l  

where, to make contact with the results of subsection 4.1 above, BA has been denoted 
by CT in the factor outside the integral and by 1/D within the integral. The integral is 
over all non-intersecting paths from x:, . . . ,xb at T = 0 to x, , .  . . ,xN at T = t .  

Writing t = is, and supposing xi@) = xi(s), shows that G is the path integral (with 
h = 1) for N fermions of mass 1/D in a constant potential V(x) = a. Thus, as detailed 
in [13], G satisfies the Schrodinger equation 

D d2 a 
as 

- q G  + a G  = i-G. 
j = l  

(4.12) 

Since s = -it, we see that this equation is the N-dimensional generalisation of equation 
(4.7). Equation (4.12) is to be solved subject to periodic boundary conditions (period 
L),  the initial condition 

N N  

(4.13) 
j = l  k = l  

(with xj := xj+,,,) and the no-intersections condition 

G(X’,, * .  5 X h  I XI,. . . ,Xj, * .  a 5 xk,. . . ,Xh; ; t )  = O if xi = xk. (4.14) 

Using (4.7), it can be readily verified that for N odd the required solution is 

(4.15) 

where Qlo’(x’ I x) is given by (4.6). The right-hand side of (4.15) is precisely the 
continuum limit (4.4) of the discrete partition function (2.10). From this fact all 
quantities calculated for the discrete model can be obtained for the continuum model 
by taking the limit (4.4). 

j,k=13,..,N 

4.2. A theta function identity 

We will conclude by noting that for xi = N j / L ,  j = 1, ..., N ,  the determinant (4.15) 
can be evaluated explicitly. 

Theorem 4 .1 .  Let N be odd. Then 

(4.16) 
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where 

-(.V-I)(N-2)/2 

{ - 
N I 2  - ( . W - l ) l N - 2 ) / 2 4  

f N ( 4 )  = N  4 (4.17) 

This result can be proved by first using Liouville’s theorem as detailed in theorem 
2.1 of [14], which establishes that, up to the factor f N ( q ) ,  both sides are identical. To 
evaluate fN ( q ) ,  replace xi by x j  + 7 for each j = 1,. . . , N in (4.16) and integrate over y .  
This gives 

In theorem 2.3 of [14] this identity has been proved with f N ( q )  given by (4.17). 
As well as occurring in the vicious walker problem, determinants of the form in 

(4.16) also occur in the calculation of correlation functions in the two-dimensional 
Ising model [I 51, and in the statistical mechanics of two-dimensional classical charges 
in periodic boundary conditions [14]. 
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